Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica ; (12): 3099-3107, 2023.
Article in Chinese | WPRIM | ID: wpr-999047

ABSTRACT

Taking berberine (BBR) as an example, to study whether the supramolecular hydrogel formed by berberine and lotus root starch (Nelumbo nucifera Gaertn; LRS), a natural polysaccharide, affects the inhibition to Staphylococcus aureus and the ability of biofilm clearance. The chemical structure and rheological properties of BBR@LRS gel were characterized by infrared spectroscopy and rheometer. The in vitro release of supramolecular hydrogel was observed at pH = 1.2 and pH = 7.4. Broth dilution method and biofilm clearence experiment were used to observe the bacteriostasis and biofilm clearance respectively. Cytotoxicity test and in vitro hemolysis test were used to evaluate the biosafety preliminarily. The results showed that the LRS polysaccharide hydrogel could encapsulate BBR, and there was an interaction between them. The BBR@LRS gel had good rheological properties and biosafety, and played a role in solubility enhancement and slow release of BBR, which was stronger than BBR in inhibiting the growth of Staphylococcus aureus and clearing biofilm. This study provides reference for the effect of natural polysaccharide supramolecular hydrogels on biological functions of active components of traditional Chinese medicine.

2.
Acta Pharmaceutica Sinica ; (12): 1245-1251, 2022.
Article in Chinese | WPRIM | ID: wpr-924735

ABSTRACT

Hyaluronic acid is widely used in biomaterials, cosmetics, clinical medicine and other fields due to its good biocompatibility, degradability, hydrophilicity, tumor targeting, viscosity and other characteristics. Pharmacodynamic activities of natural small molecular products which derived from traditional Chinese medicine (TCM) are significant, but their low solubility and poor targeting limit the clinical application. Based on supramolecular properties of hyaluronic acid, in this review, numerous studies were reviewed on the improvement of solubility, bioavailability, targeting and suitable dosage forms of small molecular compounds in TCM by domestic and foreign scholars using hyaluronic acid as carrier. It provides new ideas and inspirations for exploring the potential application value of small molecule compounds in TCM and even for the research and development of new drugs.

3.
Acta Pharmaceutica Sinica ; (12): 1901-1908, 2022.
Article in Chinese | WPRIM | ID: wpr-929428

ABSTRACT

It is a common understanding that turbidity and precipitation of traditional Chinese medicine are easy to occur in the process of decocting. At present, our research group found that the cause of "multi-phase of traditional Chinese medicine decoction" mainly came from the interaction between the effective components of traditional Chinese medicine, especially the interaction of acid and base components. For example, the Liquorice and Rhizoma chinensis was a supramolecular system formed by a large number of active components in the decoction (>30%), and could stably exist in the decoction system. In this study, the supramolecular part was extracted, and the morphology of the supramolecular part was characterized by scanning electron microscopy and dynamic light scattering. It was observed that the supramolecular particles were uniform in size and regular in shape. The main components of supramolecular sites were identified by liquid mass spectrometry (LC-MSn). The results of UV and IR spectra showed that the chemical components of Liquorice and Rhizoma chinensis in the co-decocting process collided with each other, and weak bonds were formed between the functional groups of the molecules, which then induced the aggregation to form supramolecules. Thereafter, Through the diarrhea model of mice, sensory evaluation and antibacterial activity evaluation found that Liquorice and Rhizoma chinensis decocted together enhanced the antibacterial activity of Rhizoma, and compatibility "reconcile" Rhizoma "big bitter cold" property compared with single decoction group and interval administration group. All animal experiments were approved by the Animal Ethics Committee of Beijing University of Chinese Medicine, and the relevant regulations of Beijing University of Chinese Medicine on experimental animals were strictly followed. In this study, supramolecular chemistry method was used to preliminarily discuss the scientific connotation of "increasing efficiency and decreasing toxicity" of Liquorice and Rhizoma chinensis combined decoction from three perspectives of "property, efficacy and taste", and provide new ideas for the basic research of "reconcile" compatibility of Liquorice.

4.
China Journal of Chinese Materia Medica ; (24): 2699-2709, 2021.
Article in Chinese | WPRIM | ID: wpr-887940

ABSTRACT

The cross combination of dry-method(network pharmacology analysis) and wet-method(high-resolution mass spectro-metry with antioxidation experiment) was used to predict antioxidant quality markers(Q-markers) of Hippophae tibetana. Ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) was developed to rapidly separate and identify the chemical constituents in H. tibetana. Then in DPPH free radicals and superoxide anion scavenging experiment, the antioxidant activity of the four different polar parts with extracts of petroleumether, ethyl acetate, n-butanol and water was evaluated. Network pharmacology method was used for functional enrichment and pathway analysis to screen antioxidant-related components and preliminarily explain the mechanism of action. On this basis, multi-source information was integrated to predict the antioxidant Q-markers. The results showed that 51 components in H. tibetana were identified, including 18 flavonoids, 14 terpenoids, 6 alkaloids, 4 coumarins and phenylpropanoids, 3 volatile components and 2 polyphenols. The antioxidant capacity of different fractions: ethyl acetate > n-butanol > water > petroleum ether. The medicine mainly acted on PI3 K-Akt and FoxO signaling pathways to perform antioxidant effects through flavonoids such as quercetin, luteolin and kaempferol. According to the results of dry-method and wet-method, quercetin, luteolin and kaempferol, the representatives of poly-hydroxy flavone, may be the antioxidant Q-markers of H. tibetana. In this study, with the antioxidant Q-markers of H. tibetana as an example, an investigation model of predicting Q-marker was discussed based on the ternary system of composition, function and informatics, providing a scientific basis for the establishment of quality evaluation standards for H. tibetana.


Subject(s)
Antioxidants , Chromatography, High Pressure Liquid , Hippophae , Mass Spectrometry , Technology
5.
Acta Pharmaceutica Sinica ; (12): 2119-2126, 2021.
Article in Chinese | WPRIM | ID: wpr-887044

ABSTRACT

The purpose of this study was to explore the interaction mechanism between glycyrrhiza protein and berberine in the decocting process of Rhizoma Coptidis and Liquorice and its effect on the pharmacodynamic effect. In this experiment, licorice crude protein was obtained from licorice decoction pieces, and it was found that licorice crude protein and berberine could form spherical supramolecular particles after decocting together. Morphological characterization was carried out by using Malvin particle size analyzer and emission scanning electron microscopy, and the supramolecular particles were observed to be nanoscale, which was significantly different from the morphology of licorice protein and berberine. The results of ultraviolet, infrared and fluorescence spectroscopy showed that the mechanism of molecular interaction was induced by weak bonds such as electrostatic attraction and hydrophobic interaction. Furthermore, the antimicrobial activity of berberine was significantly affected by the supramolecular particles of licorice protein-berberine, which were significantly different from the mechanical mixture. This study reveals the pharmacological value of macromolecular substances such as proteins in the decoction of licorice and Coptis chinensis from a new perspective, which is helpful to promote the secondary development of clinical effective prescriptions, especially the research on the pharmacological substance basis of classic famous prescriptions.

6.
Acta Pharmaceutica Sinica ; (12): 2561-2566, 2021.
Article in Chinese | WPRIM | ID: wpr-886948

ABSTRACT

In order to study the contraindications of the compatibility of Flos Genkwa-Radix et Rhizoma Glycyrrhizae, in this study, the solubilizing and poisoning essence were explored. In this experiment, chromatographic assay, field emission scanning electron microscopy, MTT cytotoxicity evaluation, and other methods were used to study the main chemical components, morphology and toxicity of the ethyl acetate part of Flos Genkwa and its co-decoction with glycyrrhizic acid, in order to clarify Flos Genkwa-Radix et Rhizoma Glycyrrhizae incompatibility provides a new idea for the research on incompatibility of Flos Genkwa-Radix et Rhizoma Glycyrrhizae. The results showed that after co-decoction of the ethyl acetate part of Flos Genkwa with glycyrrhizic acid, high performance liquid chromatography (HPLC) detected the dissolution of the toxic component yuanhuacine of 54.8%, while yuanhuacine chromatographic peak was not detected in the Flos Genkwa ethyl acetate part of the single decoction. The increase of co-decoction dissolution rate was observed by scanning electron microscopy, and it was found that glycyrrhizic acid uniformly dispersed the fat-soluble components of Flos Genkwa into nano-scale particles, which improved the solubility and stability in the solution. Furthermore, the results of cytotoxicity evaluation showed that the survival rate of cells decreased after co-decoction, 4',6-diamidino-2-phenylindole (DAPI) staining also gave the same results. In summary, the co-decoction of the ethyl acetate part of Flos Genkwa with glycyrrhizic acid promotes the dissolution of the toxic component yuanhuacine, and makes the part form uniformly distributed nanoparticles, which is conducive to the absorption of the ingredient and increases the toxicity.

7.
Acta Pharmaceutica Sinica ; (12): 330-334, 2020.
Article in Chinese | WPRIM | ID: wpr-789019

ABSTRACT

The property of medicine is the "identity card" of traditional Chinese medicine (TCM), and the key to crack the theory of property of TCM. Based on molecular thermodynamics, the effects of interaction between TCM and organs in vitro were studied from the perspective of micro-energy release and absorption in order to construct a new idea of characterizing meridian theory. Scutellaria baicalensis, for example, application of isothermal titration calorimetry (ITC) were used to determine the energy changes during the interaction of Scutellaria baicalensis and its main active ingredient baicalin with brain, heart, lung, spleen and kidney in vitro, comparison including the association constant (Ka) and disassociation constant (Kd), combined with thermodynamic parameters, such as stoichiometry ratio (n), enthalpy change (ΔH), entropy change (ΔS), Gibbs free energy (ΔG), it is found that the interaction intensity between Scutellaria baicalensis and lung is significantly stronger than that of other organs, which is consistent with the theory of the return of Scutellaria baicalensis in ancient books. In addition, baicalin, the main active ingredient, showed the same action pattern as Scutellaria baicalensis. The thermodynamic parameters analysis showed that the action was a weak bond-induced spontaneous chemical binding reaction driven by both entropy and enthalpy. The results of specific curl measurement further proved the interaction between baicalin and lung, and were consistent with the results of ITC titration, indicating that ITC could be used to characterize the meridian tropism of TCM. Therefore, based on ITC, it is scientific and feasible to characterize the meridian of TCM by the energy change of the interaction between the decoction of TCM and its active components and the in vitro tissues respectively. This experiment provides a new idea for the discussion of meridian of TCM.

8.
China Journal of Chinese Materia Medica ; (24): 3969-3973, 2017.
Article in Chinese | WPRIM | ID: wpr-335755

ABSTRACT

It has been focused on that there will be precipitates when decoction of Scutellariat Radix mixed with Coptidis Rhizoma. Precipitation was derived from interaction between acidic and basic compounds. This study was based on the interaction between active ingredients after compatibility, strived to explore whether it was feasible to judge the qualities of different Scutellariat Radix by isothermal titration calorimetry (ITC), build a new method established to characterize the qualities of traditional Chinese medicine by taking a series of active ingredients as index. We selected Scutellariat Radix (including three batches of different Scutellariat Radix bought from market and immature Scutellariat Radix which usually was used as adulterant) in different batches as the samples. First, we used ITC to determine the binding heat of the reactions between berberine and the decoctions of different Scutellariat Radix. The test showed that the binding heat of berberine titrated Scutellariat Radix was Scutellariat Radix A (-317.20 μJ), Scutellariat Radix B (-292.83 μJ), Scutellariat Radix C (-208.95 μJ) and immature Scutellariat Radix (-21.53 μJ), respectively. We chose deionized water titrated by berberine (2.51 μJ) as control. The heat change of berberine titrated immature Scutellariat Radix was much less than berberine titrated Scutellariat Radix. Then we determined the absorbance of different decoctions of Scutellariat Radix by UV Spectrophotometry on the maximum absorption wavelength, and the result is: Scutellariat Radix A (0.372), Scutellariat Radix B (0.333), Scutellariat Radix C (0.272), immature Scutellariat Radix (0.124). The absorbance of immature Scutellariat Radix was also less than Scutellariat Radix. The result of ITC assay was corresponded to UV spectrophotometry test. In conclusion, ITC could be used to characterize the quality of Scutellariat Radix. The new method to characterize the qualities of traditional Chinese medicine by taking a kind of active ingredients as index building by ITC was simple, scientific and feasible.

9.
China Journal of Chinese Materia Medica ; (24): 2679-2683, 2014.
Article in Chinese | WPRIM | ID: wpr-330271

ABSTRACT

Ligustrazine, one of the major effective components of the Chinese traditional medicinal herb Ligusticum Chuanxiong Hort, has been reported plenty of biological activities, such as protect cardiovascular and cerebrovascular, neuroprotection and anti-tumor, et al. Because of its remarkable effects, studies on structural modification of ligustrazine have attracted much attention. Ligustrazine synthetic derivatives reported in recent decades are mainly derived from four primary intermediates (TMP-COOH, TMP-OH, TMP-NH2, HO-TMP-OH). To explore the neuroprotection activitiy of ligustrazine intermediates, six ligustrazine intermediates (2, 5, 8, 11, 12, 13) were synthesized and their protective effects against CoCl2-induced neurotoxicity in differentiated PC12 cells were studied. The target compounds were prepared via different chemical methods, including oxidation, substitution, esterification and amidation without changing the structure nucleus of ligustrazine. Compared with TMP (EC50 = 56.03 micromol x L(-1)), four compounds (2, 5, 12 and 13) exhibited higher activity (EC50 < 50 micromol x L(-1)) respectively, of which, compound 2 displayed the highest protective effect against the damaged PC12 cells (EC50 = 32.86 micromol x L(-1)), but target compounds 8 and 11 appeared lower activity (EC50 > 70 micromol x L(-1)). By structure-activity relationships analysis, the introduction of carboxyl, amino to the side chain of ligustrazine and appropriately increase the proportion of ligustrazine may contribute to enhance its neuroprotective activity, which provides a reference for the design, synthesis and activity screening of relevant series of ligustrazine derivatives in the future.


Subject(s)
Animals , Rats , Cell Differentiation , Chemistry Techniques, Synthetic , Cobalt , Toxicity , Drugs, Chinese Herbal , Chemistry , Neuroprotective Agents , Chemistry , Pharmacology , Neurotoxins , Toxicity , PC12 Cells , Pyrazines , Chemistry , Pharmacology
10.
China Journal of Chinese Materia Medica ; (24): 133-135, 2013.
Article in Chinese | WPRIM | ID: wpr-346859

ABSTRACT

Patent network of Chinese patent medicines is a patent group composed of several correlated patents around basic patents or core technologies characterized by traditional Chinese medicine technologies. With the clue of Tianjin Tasly Group's acquisition of seven compound Danshen patents characterized by extract feeds of Beijing Cairui Pharmaceutical Co., Ltd., we made an analysis on how Tasly builds a patent network themed on compound Danshen preparation products characterized by extract feeds, in hope of providing reference for other Chinese pharmaceutical enterprise to establish and improve key patent networks of traditional Chinese medicines.


Subject(s)
Chemistry, Pharmaceutical , Workforce , Methods , China , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Methods , Patents as Topic , Phenanthrolines , Salvia miltiorrhiza , Chemistry
11.
China Journal of Chinese Materia Medica ; (24): 208-211, 2013.
Article in Chinese | WPRIM | ID: wpr-318691

ABSTRACT

To explore the effects of protocatechuic acid (PCA) and its derivants on angiogenesis of the chick embryo chorioallantoic membrane (CAM) and scavenging DPPH radical in vitro. The protection of benzyl and alkaline hydrolysis of benzyl ester were employed. The structures of PCA-1, PCA-2 and PCA-3, the derivates of PCA, were elucidated by 1H, 13C-NMR and MS data The bioactivity of PCA and its derivants was evaluated on the models of DPPH radical and chick embryo chorioallantoic membrane (CAM), respectively. PCA and PCA-1 showed the best activity of scavenging DPPH radical among all the compounds. In contrast to PCA-2, PCA and PCA-3 displayed inhibition to angiogenesis (P < 0.001). Pyrocatechol hydroxyl is the active site of PCA on scavenging DPPH radical in vitro. PCA with carboxyl and without pyrocatechol hydroxyl seems to show promotion to angiogenesis, but it needs more evidences.


Subject(s)
Animals , Chick Embryo , Angiogenesis Inducing Agents , Chemistry , Biphenyl Compounds , Catechols , Chemistry , Chorioallantoic Membrane , Drugs, Chinese Herbal , Chemistry , Free Radical Scavengers , Chemistry , Hydroxybenzoates , Chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Picrates
SELECTION OF CITATIONS
SEARCH DETAIL